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Abstract Mavoglurant (MVG) is an antagonist at the

metabotropic glutamate receptor-5 currently under clini-

cal development at Novartis Pharma AG for the treat-

ment of central nervous system diseases. The aim of this

study was to develop and optimise a population whole-

body physiologically-based pharmacokinetic (WBPBPK)

model for MVG, to predict the impact of drug–drug

interaction (DDI) and age on its pharmacokinetics. In a

first step, the model was fitted to intravenous (IV) data

from a clinical study in adults using a Bayesian

approach. In a second step, the optimised model was

used together with a mechanistic absorption model for

exploratory Monte Carlo simulations. The ability of the

model to predict MVG pharmacokinetics when orally co-

administered with ketoconazole in adults or administered

alone in 3–11 year-old children was evaluated using data

from three other clinical studies. The population model

provided a good description of both the median trend and

variability in MVG plasma pharmacokinetics following

IV administration in adults. The Bayesian approach

offered a continuous flow of information from pre-clini-

cal to clinical studies. Prediction of the DDI with keto-

conazole was consistent with the results of a non-

compartmental analysis of the clinical data (threefold

increase in systemic exposure). Scaling of the WBPBPK

model allowed reasonable extrapolation of MVG phar-

macokinetics from adults to children. The model can be

used to predict plasma and brain (target site) concentra-

tion–time profiles following oral administration of vari-

ous immediate-release formulations of MVG alone or

when co-administered with other drugs, in adults as well

as in children.

Keywords Mavoglurant � Population pharmacokinetics �
Physiologically-based pharmacokinetic models � Bayesian

analysis � Drug–drug interactions � Paediatrics

Introduction

Mavoglurant (MVG) is an antagonist at the metabotropic

glutamate receptor 5 currently under clinical development

at Novartis Pharma AG for the treatment of central nervous

system diseases. Although MVG can be administered by

both the intravenous (IV) and oral route, oral formulations

are more practical for chronic treatment of patients. During

clinical studies in adults, an immediate-release formulation

(hard gelatine capsule) was mainly employed. A population

model was recently proposed to describe MVG pharma-

cokinetics following both IV and oral administration in

healthy adult subjects [1]. For a standard individual under

fasted conditions, the bioavailability from the capsule

formulation was estimated to be 44 % of the administered

dose. MVG is a lipophilic neutral drug (logP of 4.7)

extensively distributed to organs and tissues [2]. Its steady-

state volume of distribution was estimated to be 172 l for a

standard 70-kg individual and appeared to be moderately

variable in a healthy adult population (coefficient of vari-

ation [CV] of 30 %) [3]. This variability was partly
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explained by body weight (BW) variations across indi-

viduals. Elimination of MVG in humans is believed to be

primarily mediated by hepatic oxidative metabolism

involving mainly cytochrome P450 (CYP) 3A4, 2C8, 2C9

and 2C19 [2]. Systemic clearance (CL) was reported to be

moderately variable in healthy adults (32 % CV) with

standard value in the population estimated to be 29.3 l/h

[3].

The population pharmacokinetic model previously

developed for MVG offered sufficient flexibility to

describe the atypical and highly variable concentration–

time data resulting from IV and oral administration in

healthy adult subjects [3]. However, the empirical nature of

the model allowed neither a thorough understanding of

MVG pharmacokinetics nor extrapolation outside the

studied population (e.g. different age or BW groups) and

experimental conditions (e.g. co-administration). Con-

versely, physiologically-based pharmacokinetic (PBPK)

models are mechanistic models that help to gain insight

into the absorption, distribution and elimination behaviour

of drugs. The main advantages of such models over con-

ventional empirical models are their suitability for pre-

diction of kinetics in various tissues and for extrapolation

between species, routes of administration and dosing reg-

imens [4]. The parameters of a PBPK model are of two

types: system-specific and drug-specific. While informa-

tion on system-specific or physiological parameters can be

found in the literature, drug-specific parameters are typi-

cally derived from the results of pre-clinical in vitro or

animal experiments. Both physiological and drug-specific

parameters can carry a high degree of uncertainty. One way

of introducing uncertainty during parameter estimation is

to apply a Bayesian approach which yields statistical dis-

tributions of the parameter values (posterior distributions)

rather than point estimates. Posterior distributions are

consistent with both experimental data and prior beliefs

(prior distributions of the parameters) and can be approx-

imated by random draws using Markov Chain Monte Carlo

(MCMC) simulations [5]. Also, although it has been shown

that a generic whole-body PBPK (WBPBPK) model is

globally structurally identifiable under certain assumptions

[6], the high number of parameters and the absence of

tissue data in human typically result in a numerically

unstable analysis. Incorporating prior information on the

parameters that are not well informed by the data can help

to stabilise the analysis [7]. During drug development, it is

desirable to qualify and quantify inter-individual variability

(IIV) in the pharmacokinetics of tested compounds.

Depending on the quality and amount of clinical data

available, this can be done by performing analyses based

on hierarchical models to estimate unexplained variability

in the drug-specific parameters and improve individual

parameter estimates [8]. A Bayesian population analysis

outcomes posterior distributions not only for the individual

parameters but also for the population parameters [9]. This

approach has been applied successfully to physiological

pharmacokinetic/toxicokinetic models [10–12] that are

especially suited for separating and characterising the

physiologic variability from the overall variability in the

system, as clear relationships between physiological

parameters and individual covariates (i.e. BW, age and

gender) have been established [13, 14].

In the present study, we developed a population

WBPBPK model to gain mechanistic understanding of

MVG pharmacokinetics in adults. Since clinical data fol-

lowing IV administration in healthy adult volunteers were

available, we optimised the population model using a

Bayesian approach to incorporate prior pre-clinical

knowledge on the drug-specific parameters. In this manner,

we maintain a continuous flow of information from pre-

clinical to clinical studies and possibly help stabilise the

estimation of the parameters. The other aim of this study

was to illustrate the ability of WBPBPK models to

extrapolate pharmacokinetics across experimental condi-

tions and studied populations. As part of MVG clinical

development, the drug–drug interaction (DDI) with keto-

conazole (strong CYP3A4 inhibitor) was evaluated in

adults; the results (unpublished) suggested a threefold

increase in the systemic exposure to MVG when orally co-

administered with ketoconazole. Also, the efficacy of MVG

in treating patients with fragile X syndrome was investi-

gated. Since this mental retardation syndrome is typically

diagnosed in young children [3, 15], MVG pharmacoki-

netics were studied in patients aged from 3 to 11 years

(internal unpublished results). A powder for oral suspen-

sion (POS) was developed for drug administration in

children and was assessed in adult volunteers prior to the

paediatric study. Using these clinical data, we evaluated the

performance of our model in predicting MVG plasma

pharmacokinetics when co-administered with ketoconazole

in adults or administered alone in children. To be able to

predict concentration–time data after oral administration of

the immediate-release formulations used in the DDI (cap-

sule) and paediatric studies (POS), a mechanistic absorp-

tion model was also implemented. Scaling the WBPBPK

model from adult to children was done by accounting for

age-related anatomical/physiological changes in the stud-

ied children.

Methods

Work flow for PBPK predictions

The work flow for model development and extrapolation of

MVG pharmacokinetics across formulations, dosing
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regimens and age groups is depicted in Fig. 1. Firstly, a

WBPBPK structural model was developed using physio-

logical parameters from the literature and estimates of the

drug-specific parameters from in vitro and animal experi-

ments. Secondly, a sensitivity analysis of the WBPBPK

model was performed to identify the drug-specific param-

eters that could be estimated just with plasma data. Thirdly,

a hierarchical model accounting for both IIV and uncer-

tainty in the parameters was built and optimised based on

clinical IV data. Subsequently, a mechanistic absorption

model for oral immediate-release formulations was

implemented similarly to the disposition model. Finally,

Monte Carlo simulations were performed to predict MVG

pharmacokinetics under different experimental conditions

(e.g. route of administration, formulation or dosing regi-

men) and for a different sup-population (e.g. children).

Clinical data

Plasma data from four Phase-I clinical studies (Study 1–4)

were used to optimise the MVG population WBPBPK

model (Study 1) and evaluate its performance in different

experimental conditions and sub-populations (Study 2–4).

The IV data used to optimise the disposition model (Study

1) were previously described by Wendling et al. [3].

Briefly, 120 healthy volunteers received a single 10-min IV

infusion of 25 mg, 37.5 mg or 50 mg of MVG. Most

subjects were young (median age of 31 years) Caucasian

(62 %) male (87 %) with a median BW of 83 kg and a

median body mass index of 27 kg/m2.

Study 2 was a two-period single-sequence cross-over

study conducted to quantify the impact of the co-admin-

istration of ketoconazole on MVG pharmacokinetics.

During the first period, each of the 16 healthy subjects

enrolled received a single 25-mg dose of MVG alone

(immediate-release capsule formulation). Blood samples

were collected at pre-dose, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 12, 24,

36 and 48 h post-dose. Data from this first period were

used to check the ability of the model to predict concen-

tration–time data following oral administration of the

capsule formulation in adults. Following a washout of a

minimum 10 days, subjects received a repeated 400-mg

daily oral dose of ketoconazole for 10 days. On Day 5 of

this second period, the morning dose of ketoconazole was

followed by a single oral administration of 25 mg of MVG.

Only pre-dose blood samples were collected for keto-

conazole. MVG blood samples were collected at pre-dose,

0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 12, 24, 36, 48, 72, 96 and 120 h

post-dose. Subjects were mostly young (median age of

34 years) Caucasian (88 %) male (100 %) with a median

BW of 76 kg and a median body mass index of 24 kg/m2.

Data from Study 3 were used to evaluate the ability of

the mechanistic absorption model to predict plasma con-

centration–time profiles resulting from oral administration

of the POS formulation of MVG in adults. The aim of the

study was to evaluate the pharmacokinetic properties of

two paediatric formulations in healthy adults, prior to

studies in children. Only data for the paediatric formulation

used in Study 4 were included in the present analysis. 28

healthy young (median age of 32 years) Caucasian (97 %

of subjects) male received a single oral dose of 50 mg of

MVG in 5 ml of suspension under fasted conditions. The

studied subjects had a median BW of 82 kg and a median

body mass index of 26 kg/m2. Blood samples were col-

lected at pre-dose, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 10, 14,

24, 36 and 48 h post-dose.

Study 4 was conducted to evaluate MVG pharmacoki-

netics after single and multiple oral administration in

children with fragile X syndrome aged from 3 to 11 years

[15]. Only single dose data were used to assess the ability

of the WBPBPK model to extrapolate across age groups.

21 subjects received a single oral 15-mg dose of MVG POS

formulation (1.5 ml of suspension after reconstitution with

water). Blood samples were collected at pre-dose, 0.5, 2, 4,

8, 12 and 24 h post-dose. The demographic characteristics

of the children are summarised in Table 1.

All studies were conducted according to the ethical

principles of the Declaration of Helsinki and all protocols

were approved by the Independent Ethics Committee or

Institutional Review Board for each study center. Partici-

pants were males and non-pregnant females and all pro-

vided full written informed consent prior to inclusion in the

studies. Plasma concentrations were determined by a

Fig. 1 Schematic work-flow of the mechanistic modelling and

simulation process applied to MVG pharmacokinetics. IR denotes im-

mediate-release. See text for definition of other symbols
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validated liquid chromatography-tandem mass spectrome-

try method with a lower limit of quantification of 2 ng/ml

for Study 1–3 and 0.2 ng/ml for Study 4 [16]. Concentra-

tions below these limits were labeled as zero.

Structure of the WBPBPK model for MVG

Disposition

The WBPBPK model for MVG disposition (Fig. 2) com-

prises 13 tissue compartments, namely lungs (LU), heart

(HT), brain (BR), muscle (MU), adipose (AD), skin (SK),

spleen (SP), pancreas (PA), liver (LI), stomach (ST), gut

(GU), bones (BO) and kidneys (KI). These compartments

are connected together by the arterial and venous blood

compartments. The LI receives blood both from the

splanchnic organs (SP, PA, ST and GU) via the portal vein

and directly from the hepatic artery. Since the weight of the

selected tissues accounted only for 96 % of total BW, an

additional rest-of-body (RB) compartment was included.

All tissues were considered as well-stirred compartments,

i.e. drug uptake by tissues was assumed perfusion-limited

rather than permeability-limited. This assumption was

deemed reasonable for a small lipophilic compound like

MVG (molecular weight of 313 g/mol). The extent of drug

distribution in a tissue is hence characterised by the equi-

librium tissue-to-blood partition coefficient (Kb;T ). The

dynamics of drug amount in the tissue compartments can

be described by the following equation:

dCT

dt
� VT ¼ QT CVEN=ART � CT

Kb;T

� �
ð1Þ

where CT denotes the concentration (lg/l), VT the volume

(l) and QT the blood flow (l/h) of the different tissues;

CVEN=ART is either the venous (for the LU) or arterial (all

other tissues) blood concentration (lg/l). The rate equa-

tions for the arterial blood (Eq. 2) and venous blood

(Eq. 3) compartments were defined as follows:

dCART

dt
� VART ¼ QLU

CLU

Kb;LU
� CART

� �
ð2Þ

dCVEN

dt
� VVEN ¼

X
QT

CT

Kb;T
� QLUCVEN ð3Þ

where
P

QT
CT

Kb;T
includes all tissues except the splanchnic

organs; VART is the volume of arterial blood (l) and VVEN

the volume of venous blood (l); QLU represents the blood

flow (l/h), CLU the concentration (lg/l) and Kb;LU the par-

tition coefficient for the LU. MVG plasma concentrations

were derived by dividing CVEN by the blood-to-plasma

ratio BP. Based on the results of a previous pharmacoki-

netic study in healthy subjects [2], systemic clearance was

considered to occur exclusively in the liver. The time

dependency of drug amount in the liver was therefore

modelled as:

dCLI

dt
� VLI ¼ QHACART þ

X
QT

CT

Kb;T
� QLI

CLI

Kb;LI

� CLint;LI fub
CLI

Kb;LI
ð4Þ

Fig. 2 Schematic representation of the WBPBPK model for MVG.

See text for definition of symbols

Table 1 Demographic and

anthropometric characteristics

of Study 4 subjects

Age (years)

3 4 5 6 7 8 9 10 11

Number of subjects 1 8 3 1 2 1 2 2 1

Body weight (kg) 22.4 18.8 19 23.5 20.5 28.1 33.1 51.8 45

Body surface area (m2) 0.829 0.742 0.788 0.9 0.82 1.06 1.14 1.41 1.33

Anthropometric variables are given as median
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where the sum
P

QT
CT

Kb;T
includes only the splanchnic

organs; QHA is the blood flow (l/h) from the hepatic artery;

CLI represents the concentration (lg/l), QLI the blood flow

(l/h), Kb;LI the partition coefficient and VLI the volume (l)

of the liver; CLint;LI denotes MVG intrinsic clearance (l/h)

in the liver; fub represents the fraction unbound in blood

calculated as the ratio of the fraction unbound in plasma fup
to BP. To describe the pharmacokinetics of MVG after IV

infusion, the initial conditions of all states of the WBPBPK

model were set to zero. The unit of the dose were converted

from mg to lq and the unit of the infusion time from min to

h in order to have an infusion rate in lq/h and concentra-

tions in lg/l (or ng/ml). For an IV bolus of the drug, the

initial condition of the venous blood compartment would

be set to the administered dose.

Absorption

A three-compartment absorption model (Fig. 3) based

on the compartmental absorption and transit (CAT)

model was applied to the gastro-intestinal (GI) tract

[17]. For simplicity, the small intestine lumen (SI) was

represented by one compartment instead of seven in the

CAT model. Although the simplified model doesn’t

describe the small intestinal transit time exactly as the

CAT model, the impact on systemic absorption of MVG

was deemed negligible. To account for dissolution of the

dosage form, two levels distinguishing solid drug from

dissolved drug were included for each segment of the GI

lumen, i.e. the stomach (ST), SI and colon. The disso-

lution process was modelled according to Hintz and

Johnson [18]. Absorption of dissolved drug was con-

sidered only in the small intestine enterocytes (ENT).

Pre-systemic clearance was considered from both the

ENT and LI compartments. The rate equations for each

level of the ST (Eqs. 5, 6), SI (Eqs. 7, 8), colon (Eqs. 9,

10) compartments, as well as for the ENT compartment

(Eq. 11) are given below:

dAund;ST

dt
¼ �kt;ST � Aund;ST � z � SST � Adis;ST

VST

� �
� Aund;ST

ð5Þ
dAdis;ST

dt
¼ z � SST � Adis;ST

VST

� �
� Aund;ST � kt;ST � Adis;ST ð6Þ

dAund;SI

dt
¼ kt;ST � Aund;ST � kt;SI � Aund;SI

� z � SSI �
Adis;SI

VSI

� �
� Aund;SI

ð7Þ

dAdis;SI

dt
¼ kt;ST � Adis;ST þ z � SSI �

Adis;SI

VSI

� �
� Aund;SI

� kt;SI � Adis;SI � ka � Adis;SI

ð8Þ

dAund;Colon

dt
¼ kt;SI � Aund;SI ð9Þ

dAdis;Colon

dt
¼ kt;SI � Adis;SI ð10Þ

VENT � dCENT

dt
¼ ka � Adis;SI � QENT � CENT

� CLint;ENT � fuENT � CENT

ð11Þ

where Aund;ST=SI=Colon refers to the amount (lg) of undis-

solved drug and Adiss;ST=SI=Colon to the amount of dissolved

drug in either the ST, SI or colon; kt;ST is the transit rate

constant (h-1) for the ST and kt;SI the constant for the SI; z

is a dissolution constant (l/h/g) independent of the volume

of medium and of drug amount and solubility [19]; SST
refers to drug solubility (lg/l) in the ST and SSI to that in

the SI; VST refers to the volume of fluid (l) in the ST and

VSI to the volume in the SI; ka is the absorption rate con-

stant calculated as in Eq. 12; VENT represents the volume

(l), CENT the concentration (lg/l), QENT the blood flow (l/

h), CLint;ENT the intrinsic clearance (l/h) and fuENT the

fraction unbound in the ENT compartment. The effective

permeability of MVG in the jejunum (Peff , in cm/h) and the

radii of the SI (rSI , in cm) were used to estimate ka (h-1) as

follows:

Fig. 3 Schematic representation of the mechanistic absorption model

for MVG immediate-release formulations. See text for definition of

symbols

J Pharmacokinet Pharmacodyn (2015) 42:639–657 643

123



ka ¼
2Peff

rSI
ð12Þ

When incorporating the absorption model into the

WBPBPK model, the rate equation for the liver (Eq. 4)

becomes:

dCLI

dt
� VLI ¼ QENTCENT þ QHACART þ

X
QT

CT

Kb;T

� QLI

CLI

Kb;LI
� CLint;LIfub

CLI

Kb;LI
ð13Þ

All states of the full model had initial conditions equal

to zero except for the state representing the undissolved

drug in the stomach (Eq. 5) for which the initial condition

was set to the administered dose (lq).

Statistical model

To optimise the WBPBPK model using Bayesian statistics, we

developed a three-stage hierarchical model to describe both

uncertainty and random IIV in the drug-specific parameters, as

well as the residual difference between observations and

model predictions due to model misspecification, unac-

counted intra-individual variability in the parameters and

measurement error. Suppose a number ni of pharmacokinetic

measurements were made for each of the K individuals,

indexed by i. Denote the jth measurement for the ith individual

by yij and the associated time by tij. Further, denote the p-

dimensional vector of parameters for individual i by hi, and r2

the residual variance. At the first stage of the model, log-

normality was assumed for the model likelihood (Eq. 14).

p logðyijÞjhi; r2
� �

/ N log f ðDi; tij; hiÞ
� �

; r2
� �

;
i ¼ 1; . . .;K; j ¼ 1; . . .; ni

ð14Þ

In Eq. 14, the structural model f ð�Þ is a function of the

ith individual-specific dosing regimen (Di), time (tij) and

parameters (hi). At the second stage, distributional

assumptions were made for the individual-specific param-

eters to account for IIV (Eq. 15):

p hijl;Xð Þ ¼ MVLNpðl;XÞ; i ¼ 1; . . .;K ð15Þ

where MVLNpð�; �Þ denotes a p� dimensional multivariate

log-normal distribution, l is a vector of p population

parameters and X is the p� p IIV variance–covariance

matrix. At the third stage, prior distributions were assigned

to both population and individual parameters to account for

parameter uncertainty (Eq. 16):

p lð Þ ¼ MVLNp �l;
X� �

; pðXÞ ¼ IWðW; tÞ ð16Þ

where �l is a vector of p prior population parameter values;P
is the p� p variance–covariance matrix that describes

the informativeness of the prior distribution of l; W is the

scale matrix and t the degree of freedom of the inverse-

Wishart distribution IWð�; �Þ. W can be calculated as W ¼
t �X where �X is the prior expectation of X. No prior infor-

mation was considered for the variance of the residual error

r2. The hyperparameters of the model �l,
P

,W and t must

be stated explicitly.

A priori parameter distributions

Physiological parameters

Since WBPBPK models are mechanistic, information on

system-related parameters can be extracted from the

anatomy/physiology literature. To reduce the number of

estimated parameters during the optimisation process and

hence reduce the computational burden during the Baye-

sian analysis, no uncertainty in the physiological parame-

ters was considered. The weight, density and regional

blood flow for each organ/tissue of the disposition model

are given in Table 2. Note that we didn’t correct the organ

weights for residual blood due to lack of data. However,

the correction might be important for highly perfused

organs like the lungs and kidneys. To account for IIV in

blood flows and volumes, these parameters were related to

BW of the studied subjects. More specifically, regional

blood flows were expressed as fractions of the cardiac

output (fCO;T ) which was in turn defined as a function of

BW (Eq. 17) [20]:

COi ¼ 187 � BW0:81
i

� �
� 60=1000

QT ;i ¼ fCO;T � COi

ð17Þ

where COi is the cardiac output (l/h), QT ;i the tissue blood

flow (l/h) and BWi the BW (kg) of individual i. For each

tissue of the ith individual, the volume VT ;i (l) was calcu-

lated as a fraction (fBW ;T ) of BWi corrected by the density

dT (kg/l) as in Eq. 18.

VT ;i ¼ fBW ;T � BWi=dT ð18Þ

To impose physiological constraints, we computed the

blood flow and volume of the RB compartment by differ-

ence such that for each individual, all blood flows sum to

the COi and all organ weights (kg) sum to the BWi.

Drug-specific parameters

The a priori distributions of the drug-specific parameters of

the WBPBPK model are summarized in the first column of

Table 3. Prior distributions were constructed based on the

results of an in vitro metabolism experiment and a rat

distribution study performed at Novartis Pharma AG (in-

ternal unpublished data), and using in silico methods to
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scale the parameters to human. The prior mean estimate of

MVG hepatic intrinsic clearance CLint;LI (l/h) was com-

puted by scaling the in vitro intrinsic clearances determined

in recombinant human CYP enzymes. Details of the

in vitro assay as well as of the extrapolation of the intrinsic

clearance from the in vitro systems to human liver can be

found in the Online Resource (Sect. 1). Briefly, Michaelis–

Menten parameters were estimated from enzyme kinetic

data for CYP 3A4, 2C8, 2C9 and 2C19. The parameter

estimates were then used to calculate in vitro isoenzyme-

specific intrinsic clearances which were in turn scaled to

human liver as described by Howgate and co-workers [21].

The uncertainty in the Michaelis–Menten parameter esti-

mates was propagated to the prior estimate of CLint;LI

(26 % CV) using Fieller’s theorem and other basic prop-

erties of variances (Online Resource, Sect. 1) [22].

The a priori Kb;T estimates were computed by extrapo-

lation of the partition coefficients determined in rat to

human. Prior to clinical development, MVG pharmacoki-

netics was studied in rats (internal unpublished data). In

short, plasma and tissue samples (LU, HT, BR, MU, AD,

SK, LI and KI) were collected from 12 male rats at 0.8, 2, 8

and 24 h (3 rats per sampling time) after an IV bolus of

3 mg/kg of MVG. Concentrations were averaged at each

sample time and the area under the concentration–time

curve (AUC) from 0 to 24 h was calculated for each tissue

using the trapezoidal method. The AUC was extrapolated

to infinity by addition of the term Clast=kT where Clast is the

plasma or tissue concentration at the last sample time and

kT is the terminal slope of the curve. The tissue-to-plasma

partition coefficients for the different tissues in rat

(Kp;T rat) were then calculated as follows:

Kp;T rat ¼
AUCinf;T rat

AUCinf;plasma rat

ð19Þ

where AUCinf;T rat is the AUC to infinity in rat tissues and

AUCinf;plasma rat that in rat plasma. Extrapolation of

Kp;T rat to human tissue-to-blood partition coefficient

(Kb;T human) was done with the assumption that unbound

tissue-to-plasma partition coefficients are equal between rat

and human (Eq. 20).

Kpu;T human ¼ Kpu;T rat ¼ Kp;T rat=fup rat

Kb;T human ¼
Kpu;T human � fup human

BP

ð20Þ

In Eq. 20 fup rat is MVG fraction unbound in rat plasma

(0.065) and fup human that in human plasma (0.028), and

Kpu;T rat and Kpu;T human are unbound tissue-to-plasma

partition coefficients for the rat and human, respectively.

Not all tissues represented in the human WBPBPK model

were sampled in the rat. The equations proposed by

Jansson et al. were used to predict the Kp;T rat for GU and

BO from the MU value [23]. However, no model was

available for the Kp;T rat for SP, PA and ST. Hence,

Kb;T human value for MU was used for these tissues as well

as for the RB compartment of the WBPBPK model. Using

the AUC ratio method to calculate the Kp;T rat values, no

estimates of uncertainty were produced. Consequently, a

log-normal prior distribution with a hypothetical 30 % CV

was assigned to the Kb;T values that were estimated during

the analysis of Study 1 data.

The results of the pre-clinical experiments used to cal-

culate prior estimates of CLint;LI and Kb;T human included no

information on the variability in these parameters. How-

ever, based on our previous population pharmacokinetic

analysis, MVG systemic clearance is likely to be variable

in the population [3]. Perhaps just because of variability in

the blood flow and volume of the liver, but the hepatic

intrinsic clearance CLint;LI could also be variable in the

population. Hence, we estimated random IIV in CLint;LI

from the data using a diffuse inverse-Wishart distribution

as prior for the variance. This was achieved by setting the

degrees of freedom for the inverse-Wishart distribution

equal to the dimension of the variance–covariance matrix,

i.e. equal to one in our hierarchical model, as suggested in

the documentation [24] of the software NONMEM 7.3.0

(ICON Development Solutions, Hanover, Maryland, USA).

We assumed that population variation in the perfusion of

the tissues was sufficiently accounted for by the variability

in tissue volumes and regional blood flows. Also, esti-

mating a random-effect on each of the 14 Kb;T parameters

would have considerably slowed the MCMC simulations.

Therefore, the population variances of all Kb;T values were

fixed to a small value corresponding to a CV of 1 % for a

log-normally distributed variable.

Sensitivity analysis of the WBPBPK model

Due to the absence of tissue data, we expected numerical

instabilities to arise during optimisation of the population

disposition model [7]. This is because the model’s response

in the venous blood compartment, and hence in plasma, is

sensitive to only a few drug-specific parameters. To iden-

tify these parameters prior to model fitting, we performed a

sensitivity analysis of the model. The analysis was made

using 1000 sets of parameters randomly drawn from the

multivariate log-normal prior distribution (CV of 26 % for

the CLint;LI value and of 30 % for the Kb;T values) in order

to account for parameter uncertainty. For each vector of

parameters, the Jacobian matrix for the venous blood

compartment was calculated using the complex-step

derivative approximation [25]. Further, a relative
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sensitivity coefficient was calculated for each parameter of

each of the 1000 sets as follows [26]:

RSVEN;pj;k ¼
oAVEN;j;k

ohp;k
� hp;k
AVEN;j;k

ð21Þ

where RSVEN;pj;k is the venous blood response’s relative

sensitivity coefficient for the pth element of the kth vector

of parameters at time j;
oAVEN;j;k

ohp;k
is the p� j venous blood

compartment Jacobian matrix for the kth set of parameters;

hp;k is the pth element of the kth vector of parameters;

AVEN;j;k is MVG amount in the venous blood compartment

at time j, simulated with the kth set of parameters. The

sensitivity of the venous blood response to the drug-

specific parameters was graphically assessed across time

(every 0.1 h for 48 h). For a given parameter, a relative

sensitivity coefficient equal to an absolute value of 0.1

indicated that 1 % variation in the parameter value would

yield 0.1 % variation in the venous blood response at a

given time. Above a value of 0.1, the parameter was

deemed to have a significant influence on the venous blood

response and thus on the jth plasma concentration. Theo-

retically, only the parameters that have a significant influ-

ence on the plasma response would have their prior

distributions updated by plasma data. Thus, to reduce

numerical instabilities during the MCMC simulations, the

drug-specific parameters deemed to have negligible impact

on the plasma response were not estimated.

Bayesian computation

In the present PBPK modelling framework, a Bayesian

analysis allowed prior pre-clinical beliefs on the MVG-

specific parameters and information from Study 1 data to

be combined. The two sources of information are com-

plementary. During drug development, if prior knowledge

at the pre-clinical stage was sufficient, clinical studies

wouldn’t be needed. On the other hand, due to ethical

constraints, clinical data alone are insufficient to provide

reasonable and precise estimates of all the parameters of

such mechanistic models. Assigning prior distributions to

the parameters allowed us to optimise the pharmacokinetic

model while considering biological/physiological plausi-

bility. An appealing feature of a Bayesian population

approach is that the analysis yields posterior distributional

estimates of the parameters of interest for the population as

well as for each individual. The posterior distributions of

the parameters selected based on the sensitivity analysis

were approximated using random draws by Gibbs sampling

as implemented in NONMEM. Observations below the

lower limit of quantification were discarded from the

analysis. Three independent Markov chains were initialized

in parallel with different diffuse parameter values (the

second and third chains were initialized with values 50 %

higher and lower, respectively, than the first chain’s val-

ues). A Markov chain generates samples from the target

distribution only after it has converged to equilibrium.

Convergence to approximate equilibrium was monitored

Table 2 Physiological

parameter values for the

WBPBPK model

Organ/tissue Definition Regional blood flowa (%) Weightb (%) Densityc

ART Arterial blood 100 2.81 1.040

VEN Venous blood 100 5.62 1.040

LU Lungs 100 0.76 1.051

HT Heart 4 0.47 1.030

BR Brain 12 2 1.036

MU Muscle 17 40 1.041

AD Adipose 5 21.42 0.916

SK Skin 5 3.71 1.116

SP Spleen 3 0.26 1.054

PA Pancreas 1 0.14 1.045

LI Liver 25.5d 2.57 1.040

ST Stomach 1 0.21 1.050

GU Gut 14 1.44 1.043

BO Bones 5 14.29 1.990

KI Kidneys 19 0.44 1.050

RB Rest-of-body 7.5 3.86 1.040

a Given as a percentage of the cardiac output [34]
b Given as a percentage of total BW [53]
c The value of 1.040 was used when the density was not reported [53]
d Total liver flow
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using the potential scale reduction statistic proposed by

Gelman and Rubin (R̂) [27], as well as by graphical

inspection of the Markov chains. Calculation of R̂ values

was done using the software package CODA [28]. Gelman

and Rubin recommend that the chains be sampled until all

values for R̂ fall below 1.10. To increase the number of

samples possibly drawn from the parameter target distri-

bution, 106 iterations were computed for each chain. The

WBPBPK model was implemented in NONMEM as a

system of 16 ordinary differential equations, which were

solved during the analysis using the LSODA solver

(ADVAN13 subroutine).

Monte Carlo simulations

All simulations, calculations and plots were done in

MATLAB R2014a (The MathWorks, Inc., Natick, Mas-

sachusetts, USA). For each of the following prediction

scenarios, Monte Carlo simulations were performed for

1000 hypothetical individuals by randomly drawing drug-

specific parameters from a multivariate log-normal distri-

bution and randomly sampling anthropometric/demo-

graphic covariates from the dataset used to evaluate the

predictive performance of the model. The model predictive

performance was visually assessed by computing the 5th,

50th and 95th percentiles of the simulated concentrations at

each sample time, and plotting the median together with a

90 % prediction interval under the observed data.

Evaluation of the adult population disposition model

A visual predictive check of the population WBPBPK

model’s ability to describe Study 1 data was performed.

Since Study 1 data were used to optimise the model, this

step of the modelling framework can be considered as an

internal validation of the population model. Plasma

Table 3 Prior and posterior distributions of the drug-specific parameter values for MVG WBPBPK model

Parameter Definition Prior distribution Posterior distribution R̂

n iterations (9104)

2 26 100

BP Blood-to-plasma ratio 0.61 NE – – –

fup Fraction unbound in plasma 0.028 NE – – –

CLint,LI (l/h) Hepatic intrinsic clearance 2017 (1.30) 1606 (1.04) 1.04 1 1

Kb Blood partition coefficient

LU Lungs 2.3 NE – – –

HT Heart 3.07 NE – – –

BR Brain 3.04 (1.35) 6.09 (1.16) 2.25 1.09 1.04

MU Muscle 1.38 (1.35) 2.01 (1.07) 1.06 1.02 1

AD Adipose 7.43 (1.35) 10.1 (1.05) 1.08 1.01 1

SK Skin 0.592 NE – – –

SPa Spleen 1.38 NE – – –

PAa Pancreas 1.38 NE – – –

LI Liver 5.82 NE – – –

STa Stomach 1.38 NE – – –

GU Gut 3.33 NE – – –

BO Bones 1 (1.35) 0.784 (1.24) 2.57 1.09 1.01

KI Kidneys 3.73 NE – – –

RBa Rest-of-body 1.38 (1.35) 2.04 (1.18) 1.19 1.03 1.01

x2
CLint;LI

IIV in CLint,LI 0.1 (t = 1) 0.161 (0.0228) 1.01 1 1

r2 Residual error – 0.0815 (0.0027) 1.32 1.04 1.01

No prior information was considered for r2

Prior distribution was assumed multivariate log-normal for the fixed-effects and inverse-Wishart for the variance x2
CLint;LI

All marginal distributions are expressed as geometric mean (geometric standard deviation), except the prior of x2
CLint;LI

expressed as expected

value (degrees of freedom), and the posterior of x2
CLint;LI

and r2 expressed as arithmetic mean (standard deviation)

NE not estimated
a The Kb value for the MU was used as no prior information was available
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concentration–time profiles were simulated by randomly

sampling MVG disposition parameters from MVLNp l;Xð Þ
and a residual error from Nð0; r2Þ. l, X and r2 were cal-

culated by averaging the estimates from the posterior dis-

tributions, i.e. from all 106 iterations of the three Markov

chains. For these simulations, BW was also randomly

sampled from Study 1 dataset as it was a covariate for the

blood flows and organ volumes.

Prediction of oral pharmacokinetics in adults

Following optimisation of the disposition model, a mech-

anistic absorption model was implemented to check the

ability of the WBPBPK model to extrapolate from the IV

route to the oral administration route. This step of the

PBPK modelling framework can be seen as a pre-requisite

to the prediction of the impact of DDI and age on the

pharmacokinetics of orally administered MVG (Fig. 1).

The structure of the model has been described earlier

(Eq. 5–13) and can be applied to any oral immediate-re-

lease formulation for which in vitro dissolution data are

available and can be described using the model from Hintz

and Johnson (Eq. 5–8) [18]. We used the model to predict

plasma concentration–time profiles following oral admin-

istration of both the capsule (Study 2) and POS formulation

(Study 3) in adults. As for the WBPBPK model, the

physiological parameters of the absorption model were

extracted from the literature. The transit times of dosage

forms in the ST and SI have been reported to be highly

variable in human [17, 29, 30]. To integrate random IIV in

the transit times while imposing constraints to be consistent

with physiology, we assigned a logit-normal distribution to

these parameters. The reported means and standard devi-

ations (SD) were translated from the logit-normal domain

(untransformed parameters) to the normal domain (logit-

transformed parameters) as described by Tsamandouras

and co-workers [31]. Gastric emptying and SI transit of

dosage forms were assumed to be first-order processes. The

transit rate constants were thus calculated as follows:

kt;ST;i ¼ 1=TTST ;i

kt;SI;i ¼ 1=TTSI;i
ð22Þ

where kt;ST ;i is the gastric emptying rate constant (h-1) and

TTST ;i the corresponding transit time (h) for the ith indi-

vidual; kt;SI;i is the transfer rate constant in the small

intestine lumen (h-1) and TTSI;i the small intestine transit

time (h) for the ith individual. The volumes of fluid

reported by Schiller et al. (means and SDs) were used to

model drug dissolution in the ST and SI [32]. The mean

value of 1.75 cm was used for the radius of the SI [33]. BW

was randomly sampled from either Study 2 or Study 3

dataset thereby accounting for IIV in the cardiac output and

organ volumes. The blood flow to the ENT represents

4.8 % of the cardiac output [34, 35]. The volume of the

ENT compartment was extracted from Paine et al. and was

independent of individual BW [36]. All drug-specific

absorption parameters were derived from the results of

in vitro experiments conducted at Novartis Pharma AG

(Table 4). The formulation-specific dissolution constant z

was estimated by fitting the model from Hintz and Johnson

[18] to the in vitro dissolution profiles of the capsule and

POS formulations (more details on the method and fitting

results in Sect. 2 of the Online Resource). Peff was derived

from the apparent permeability coefficient determined in an

in-house Caco-2 cell monolayer system, and using the in

silico method described by Sun et al. to scale from the

in vitro system to human jejunum [37] (details in Sect. 3 of

the Online Resource). For each of the 1000 hypothetical

individual, MVG enterocytic intrinsic clearance CLint;ENT

(Eq. 11) was computed by first back-calculating the

recombinant human CYP-specific intrinsic clearances (see

Eq. 2 in Sect. 1 of the Online Resource) from CLint;LI, then

scaling from the recombinant systems to small intestine

enterocytes as described by Howgate et al. [21]. The

assumed contributions of CYP3A4 (73 %), CYP2C8

(5 %), CYP2C9 (17 %) and CYP2C19 (5 %) to MVG

hepatic metabolism were calculated using our prior in vitro

estimates of the CYP-specific intrinsic clearances in human

liver microsomes (see Eq. 2 in Sect. 1 of the Online

Resource). We assumed that only CYP3A4, CYP2C9 and

CYP2C19 enzymes contributed to MVG gut wall meta-

bolism. The abundance of these enzymes in the ENT was

extracted from Sjogren et al. [38]. When no information on

variability in the absorption parameters was available, a

CV of 30 % was included in the present Monte Carlo

simulations. The performance of the full model (absorption

and disposition) in predicting MVG pharmacokinetics

following oral administration of both the capsule and POS

formulation was visually assessed as described earlier,

using data from Study 2 and Study 3. To gain insight into

the effect of first pass metabolism on MVG systemic

exposure, the simulations were used to calculate the frac-

tion of dose absorbed into the gut wall (Fa), the fraction

escaping gut wall metabolism (Fg) and the fraction escap-

ing hepatic extraction (Fh) for both the capsule and POS

formulation (details in Sect. 4 of the Online Resource).

Prediction of the DDI with ketoconazole in adults

To check the ability of the population PBPK model to

extrapolate across dosing regimen, we used the full model

to predict MVG pharmacokinetics following oral co-ad-

ministration with ketoconazole in adults (Study 2). As

described in Fig. 1, these simulations were conditional on
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the success of MVG pharmacokinetic predictions for the

capsule formulation (first period of Study 2). Ketoconazole

is a strong competitive inhibitor of CYP3A4 [39] and a

moderate one of CYP2C8 [40] and CYP2C9 [41]. In the

presence of a competitive inhibitor, the intrinsic clearance

of a CYP substrate can be expressed as follows:

CL
0

int;CYPi
¼ CLint;CYPi

1 þ ½I�u
Ki;u;CYPi

� � ð23Þ

where CL
0
int;CYPi

is the isoenzyme-specific intrinsic clear-

ance (l/h) in the presence of inhibitor and CLint;CYPi
the

clearance in the absence of inhibitor; ½I�u is the inhibitor

unbound concentration (lM) in the tissue of interest;

Ki;u;CYPi
is the isoenzyme-specific unbound inhibition

constant (lM). CLint;CYPi
values were derived from CLint;LI

values using our prior belief of the CYP enzymes’ contri-

bution to MVG hepatic metabolism described earlier. ½I�u
was calculated as the product of the inhibitor tissue con-

centration by the fraction unbound in the tissue. Ki;u;CYPi

was defined as the product of the isoenzyme-specific

inhibition constant and the unbound fraction of inhibitor in

microsomes. Tissue concentrations of ketoconazole were

simulated with Simcyp Version 13 (Simcyp Limited,

Sheffield, UK) and the design of Study 2 (400-mg/day for

10 days). Using the minimal PBPK model implemented in

Simcyp [42], it is possible to simulate ketoconazole total

concentrations in the portal vein and liver (see Fig. 2 in

Sect. 5 of the Online Resource). To derive ketoconazole

unbound concentrations in the liver, the fraction unbound

in the liver was calculated as the ratio of the fraction

unbound in plasma to the liver-to-plasma partition coeffi-

cient for ketoconazole. To compute ketoconazole unbound

concentrations in the ENT, we assumed that total concen-

trations in the portal vein reflect those in the ENT [42], and

used ketoconazole fraction unbound in the ENT to derive

unbound concentrations. We resorted to Simcyp default

values of the inhibition-related ketoconazole parameters

for the present simulation (Table 2 in Sect. 5 of the Online

Resource). The simulated ketoconazole concentration–time

data were used as forcing functions for the inhibition of the

intrinsic clearance in the ENT and LI compartments (Eq. 4,

11 and 23). Interpolation of ketoconazole concentrations

from the Simcyp-produced sample times to each time step

used by the differential equation solver in MATLAB was

done using the function ‘interp1’ (spline interpolation

method). To account for uncertainty in the ketoconazole

inhibition constant values reported by Simcyp, simulation

of MVG concentration–time profiles was performed

assuming a CV of 30 % for these parameters. Data from

the second period of Study 2 were used to visually evaluate

the performance of the model in predicting the impact of

the MVG-ketoconazole interaction on MVG

pharmacokinetics. To check the consistency of the PBPK

modelling approach with the standard non-compartmental

analysis approach used to quantify the impact of DDIs on

drug pharmacokinetics, we calculated for each hypothetical

individual the change in AUC to infinity when MVG was

co-administered with ketoconazole compared to when

administered alone.

Prediction of oral pharmacokinetics in children

The suitability of the WBPKPK model for extrapolation of

MVG pharmacokinetics from adults to paediatrics was

evaluated using data from Study 4. As schematically

explained in Fig. 1, this simulation was conditional on the

ability of the model to predict pharmacokinetics of the POS

formulation in adults (Study 3). Children enrolled in Study

4 were diagnosed with Fragile X syndrome. We assumed

that the disease had no impact on MVG pharmacokinetics.

Hence, the model was scaled from adult to children by

simply integrating the age-related physiological changes in

children from 3 to 11 years of age. Information on the age

dependencies of the physiological parameters was gathered

from the literature for age groups of 1, 5, 10 and 15 years.

As for the adult WBPBPK model, regional blood flows

were expressed as fractions of the cardiac output, fCO,T,

(Eq. 17) and organ volumes as fractions of BW, fBW,T,

(Eq. 18), thereby accounting for variability in tissue per-

fusion. The cardiac output was defined as a function of both

children’s age and body surface area (BSA) as described by

Johnson et al. [43]. fCO,T values were computed using the

reported age-specific values of the cardiac output [34] and

regional blood flows [44]. fBW,T values were calculated

based on age-related changes in BW and actual organ

weights [34]. The same densities as for adults were used for

most organs/tissues except for the bones for which infor-

mation was available in the literature [34]. For this simu-

lation, age and BSA were randomly sampled from Study 4

dataset for each of the 1000 hypothetical individuals. The

MATLAB ‘interp10 function (spline interpolation method)

was used to interpolate the physiological parameters from

the reference age groups to each individual age. MVG

fraction unbound in plasma fup was also scaled from adult

to children as described by Johnson et al. [43]. For each of

the 1000 hypothetical children, the hepatic intrinsic clear-

ance was derived by simply back-calculating the total

intrinsic clearance in human liver microsomes from the

adult CLint,LI (see Eq. 2 in Sect. 1 of the Online Resource),

then scaling it again to human liver using the liver weight

of the hypothetical child. We thereby assumed that the IIV

in CLint,LI (estimated from Study 1 data) is the same

between adults and children as we had no prior information

on the variability in CLint,LI in children. Based on the

ontogeny of CYP enzymes [45], we assumed that all
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enzymes involved in MVG metabolism achieved complete

maturity in children aged from 3 to 11 years (same abun-

dances in the ENT and LI as in adults). Finally, to account

for variation in drug dissolution between adults and chil-

dren, the volume of fluid in the SI, VSI (Eq. 7, 8) was

defined as a fraction of the volume of the SI cylinder which

was calculated using BSA-dependent diameter and length

of the SI [43]. The fraction of the cylinder was derived

using the adult volume of fluid VSI [32] and volume of the

SI cylinder [46] values. The predictive performance of the

model for children was graphically evaluated as for the

other simulation scenarios.

Results

Figure 4 shows the results of the sensitivity analysis of the

WBPBPK model (disposition only). For each parameter of

each of the 1000 parameter vectors drawn from the prior

distribution, the absolute value of the venous blood relative

sensitivity coefficient RSVEN;pj;k (Eq. 21) was plotted across

time. These results suggest that CLint,LI, Kb;MU and Kb;AD

are the parameters that have the main influence on the

venous blood response, but that the response might be also

slightly sensitive to the Kb;BR, Kb;BO and Kb;RB parameters.

Therefore, only six drug-specific parameters out of 15,

namely CLint,LI, Kb;MU , Kb;AD, Kb;BR, Kb;BO and Kb;RB, were

estimated during the Bayesian analysis of Study 1 data.

The posterior distribution of these parameters as well as

of the population variance of CLint,LI (x2
CLint;LI

) and of the

residual variance (r2), are summarized in Table 3 and were

obtained by pooling the one million parameter vectors from

all three Markov chains. On average, one million iterations

were completed in approximately 11 days on a medium-

sized cluster running Red Hat Enterprise Linux 6.5 on nodes

with Intel Xeon E5-2670v2 CPUs with some older nodes

running with dual Xeon X5670 CPUs. Each chain was

parallelized on 12 different nodes. The nodes are equipped

with between 24 and 96 GB of RAM and are interconnected

vial dedicated Bonded 1 Gbit network cards. As indicated

by the R̂ statistic (Table 3), convergence to the target dis-

tribution was achieved after 20,000 iterations for CLint,LI,

Kb;MU , Kb;AD and x2
CLint;LI

but not for Kb;BR, Kb;BO, Kb;RB and

r2. The distribution of the latter seemed to eventually reach

equilibrium after 260,000 iterations. Trace-plots of the three

Markov chains run to approximate the posterior distribution

are presented in Fig. 5 and show a slower mixing of the

chains for the parameters Kb;BR, Kb;BO and Kb;RB than for the

other parameters. A comparison of the marginal prior and

posterior distribution of the parameters for which we had

prior knowledge is presented in Fig. 6. All estimated

parameter distributions were updated by Study 1 plasma

concentration–time data, and appeared to be normal and

within plausible biological/physiological limits. The

smallest change from the prior mean estimate was for the

population estimate of CLint,LI (1.26-fold decrease). The

most notable deviation was observed for the estimate of

Kb;BR that doubled from the value of 3.04. Overall, the

uncertainty in all population parameter values was reduced,

especially for CLint,LI, Kb;MU and Kb;AD for which the

uncertainty CV decreased to a value of 4, 7 and 5 %,

respectively. As suggested by the small uncertainty in

x2
CLint;LI

(CV of 14 %), variability in CLint,LI was well

informed by the data and appeared to be high in the studied

healthy adult subjects (CV of approximately 108 %). The

residual error, which accounts for unexplained intra-indi-

vidual variability, model misspecification and analytical

error for observations in plasma, had a small variance

estimate (Table 3) thereby indicating a good fit of the model

to Study 1 data.

Figure 7 shows a visual predictive check of the popu-

lation model’s ability to describe Study 1 data. Observed

and simulated concentrations were dose-normalised. Both

the median trend and the variability in the data seem to be

well captured by the model, confirming the suitability of

the population WBPBPK model to describe MVG dispo-

sition in adults.

Table 4 Drug-specific parameters of the absorption model for MVG oral immediate-release formulations

Parameter Definition Estimate Source

zcapsule (10-4 l/h/g) Dissolution constant for the capsule 0.124 Fit to in vitro dissolution profile

zPOS (10-4 l/h/g) Dissolution constant for the POS 2.04 Fit to in vitro dissolution profile

SST (106 ng/ml) Drug solubility in stomach 0.019 In vitro solubility experimenta

SSI (106 ng/ml) Drug solubility in small intestine 0.037 In vitro solubility experimentb

Peff (cm/h) Jejunal effective permeability 5.1 In vitro Caco-2 experiment together with in

silico model from Sun et al. [37]

fuENT Fraction unbound in enterocytes fup Assumption based on Yang et al. [54]

a Determined in fasted state simulated gastric fluid
b Determined in fasted state simulated intestinal fluid
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The results of the Monte Carlo simulations for extrap-

olation of MVG pharmacokinetics beyond Study 1 popu-

lation and experimental conditions are presented in Fig. 8.

For each simulation scenario, the model could predict

reasonably well both the median trend and the variability in

MVG plasma concentration–time data, which shows the

adequacy of the population PBPK model for extrapolation

across routes of administration and formulations (Fig. 8a,

b), dosing regimen (Fig. 8c) and age groups (Fig. 8d).

Nevertheless, the variability in the early concentration–

time data is overall slightly under-predicted (see Fig. 8b,

c). Moreover, the model slightly over-predicts the median

trend in the paediatric data, especially during the first 5 h

post-dose during which drug absorption occurs. In adults,

the geometric mean value of the simulated Fa was slightly

higher for the POS formulation (0.65) than for the capsule

formulation (0.52). However, taking into account the

variability, there was no statistically significant difference

between the Fa values of the two formulations (the 90 %

confidence interval was [0.34; 0.73] for the capsule and

[0.39; 0.87] for the POS formulation). The geometric mean

values of Fg and Fh were 0.93 (CV of 3 %) and 0.64 (CV of

17 %), respectively, regardless of the formulations. The

DDI simulations suggest that on average, the systemic

Fig. 4 Absolute value of the relative sensitivity coefficient for the

venous blood compartment jRSVEN j (solid grey lines) plotted against

time for each parameter of each of the 1000 parameter vectors drawn

from the prior distribution. The horizontal solid black line represents

the threshold value of 0.1 used to assess the influence of a parameter

on the venous blood response: a coefficient higher than this value

suggests a significant influence on the response. See text for definition

of symbols

J Pharmacokinet Pharmacodyn (2015) 42:639–657 651

123



exposure to MVG is increased by 3.8 fold (geometric mean

of the AUC ratio) when co-administered with 400 mg of

ketoconazole compared to administration of MVG alone.

However, this increase in systemic exposure might be

highly variable in a healthy adult population (90 % confi-

dence interval of [1.4; 9.8]).

Discussion

We have reported the development, optimisation and

applications of a population WBPBPK model for MVG to

gain understanding of its pharmacokinetics during its clinical

development and to evaluate the ability of the model to

Fig. 5 Trace-plots of the three Markov chains run for the Bayesian

population analysis of Study 1 data. Log-transformed parameter

values (except for r2 and x2
CLint;LI

) are plotted against the number of

iteration (9105) of the MCMC simulations. See text for definition of

symbols (Color figure online)

Fig. 6 Posterior (solid lines) and prior (dashed lines) marginal densities of the log-transformed population parameters of MVG WBPBPK model

estimated during the Bayesian population analysis of Study 1 data. See text for definition of symbols
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extrapolate beyond the data analysed. Since the generic

WBPBPK model proposed is mechanistic in nature, its

parameters could be defined a priori using knowledge from

the literature (system-specific parameters) and pre-clinical

experiments (drug-specific parameters). Bayesian statistics

were applied to leverage our prior knowledge of the drug-

specific parameters while avoiding biologically unrealistic

estimates as well as numerical instabilities due to the absence

of tissue data. Using a Bayesian population approach, the

current pharmacokinetic model could be progressively

updated by new clinical data in order to propagate the

information throughout the drug development process.

To decrease the computational burden during the

MCMC simulations, we estimated only the parameters that

were deemed to have a significant influence on the venous

blood response. Although this approach can be considered

subjective, we believed that accounting for uncertainty in

all parameters of the WBPBPK model, including physio-

logical parameters (i.e. blood flows and organ volumes),

would have yielded significant numerical instabilities given

Fig. 7 A visual predictive check of the population WBPBPK model’s

ability to describe Study 1 data. Open circles are observed concen-

trations plotted across time, the solid red line is the median of the

simulated concentrations and the grey area represents a 90 %

prediction interval. Both observed and predicted concentrations were

dose-normalised. The insert expands the first 2 h of the concentra-

tion–time data plotted on linear scales (Color figure online)

Fig. 8 A visual evaluation of the model’s ability to predict MVG

pharmacokinetics when orally administered alone in adults using

either the capsule (a) or the POS formulation (c), when co-

administered with ketoconazole in adults using the capsule formula-

tion (b), and when administered alone in children using the POS

formulation (d). Open circles are observed concentrations plotted

across time, the solid red lines are the medians of the simulated

concentrations and the grey areas represent 90 % prediction intervals.

The horizontal dotted black lines represent the lower limit of

quantification of the assays (Color figure online)
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the available data. In fact, a preliminary analysis of Study 1

data in which we estimated all drug-specific parameters

(but not the physiological parameters) showed that the

posterior distribution of the parameters couldn’t reach

approximate equilibrium even after one million iterations

(Fig. 3 in Sect. 6 of the Online Resource) possibly because

of high correlations between parameters and/or because the

priors were too vague given the complexity of the model.

Hence, we decided to estimate only the six drug-specific

parameters selected based on the results of the sensitivity

analysis. An alternative to this approach could be to reduce

the WBPBPK model using proper lumping techniques [47]

to possibly shorten the data analysis and stabilise the

MCMC simulations. Using proper lumping, the parameters

of the lumped compartments can be directly related to the

parameters of the original model. Hence, prior knowledge

on the parameters of the WBPBPK model can be used to

construct prior distribution of the reduced model parame-

ters. Nevertheless, an optimal lumping scheme for a model

is specific to its structure and distribution of the parameter

values. Therefore, the use of reduced PBPK models for

extrapolation of pharmacokinetics across experimental

conditions and sub-populations is challenging as it often

requires the incorporation of additional mechanisms in the

model (e.g. DDI mechanism) and/or to scale the parameter

distributions (e.g. from adult to children).

The Bayesian population analysis of Study 1 data pro-

vided better and more precise estimates of the population

parameters CLint,LI, Kb;MU , Kb;AD,Kb;BR, Kb;BO and Kb;RB

while maintaining biologically plausible values (Table 3).

The data contained information mostly for CLint,LI, Kb;MU

and Kb;AD as indicated by the higher reduction in the

uncertainty in these parameters compared to the other

parameters (Fig. 6). This is consistent with the results of

the sensitivity analysis (Fig. 4) and with the fact that target

distributions were reached much faster for CLint,LI, Kb;MU

and Kb;AD (20,000 iterations) than for Kb;BR, Kb;BO and

Kb;RB (260,000 iterations) during the MCMC simulations.

The estimates of the tissue-to-blood partition coefficients

indicate that MVG is extensively distributed into the adi-

pose tissue and the brain (target site), which was expected

for a small neutral lipophilic drug that is a priori not sub-

strate to any efflux transporter [2]. Our simulations suggest

that on average, the brain exposure might be four times

higher than the plasma exposure to the drug. Although we

have no data to check whether these predictions are rea-

sonable or not, exploratory simulations can be performed to

evaluate the impact of the brain exposure on drug response

under different scenarios as well as the sensitivity of the

system to parameter uncertainty and variability. Such

exposure–response simulation study can be of clinical

value to predict a dosing regimen that best fits efficacy or

safety requirements.

Using a population approach, we could quantify IIV in

CLint,LI, even though we didn’t have prior knowledge of

the variability in this parameter. This variability is likely

explained by the heterogeneity of the CYP enzymes’

functionality within the human population. For instance

there is evidence for genetic polymorphism of CYP2C9

[48]. Information on individual genotypes was however not

available and could therefore not be tested in the popula-

tion model as a covariate for CLint,LI. Note that the high

variance estimate for CLint,LI could be inflated if variability

in the physiological parameters was underestimated. In this

study, we chose BW as explanatory variable for the

physiologic variability in the organ volumes and blood

flows. However, there is evidence that for a given age and

gender, the variability in the organ volumes is better cor-

related with body height (e.g. heart, lungs and liver) or

independent of BW and body height (e.g. brain), and that

the variability in the blood flows is better explained by

body height [14]. This should be taken into consideration if

the model were to be used for exploratory simulations,

especially for prediction of the target site exposure to the

drug as discussed in the previous paragraph.

Before discussing the results of our Monte Carlo simu-

lations, it should be stressed that the simulations were

performed without taking into account the uncertainty

around the population and individual parameter estimates,

meaning that our predictions represent the mean of the

predictions derived using the full posterior parameter

density. Making full use of the posterior parameter distri-

bution can be of value during drug development to account

for parameter uncertainty when predicting clinical end-

points. However, the objective of the present simulations

was to evaluate the ability of the model to extrapolate

MVG pharmacokinetics rather than to address specific

efficacy or safety concerns.

Incorporating a mechanistic absorption model into the

WBPBPK model allowed extrapolation of MVG pharma-

cokinetics from the IV administration route to the oral

route. The prior knowledge that we had on the system-,

drug- and formulation-specific parameters appeared good

enough for prediction of MVG oral pharmacokinetics

without having to optimise any absorption parameters

(Fig. 8a, b), although the slight under-prediction of the

variability at the early time points suggests that the

absorption parameters might be more variable than what

we accounted for. An advantage of this so-called ‘‘bottom-

up’’ approach is that, using available formulation-specific

dissolution data, the model can be applied to predict

pharmacokinetics of other oral immediate-release
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formulations of interest. This can be of value during clin-

ical development to anticipate the dose that would yield a

desirable steady-state exposure for a new formulation. In

our work, this was rather a pre-requisite to be able to

predict the impact of the DDI with ketoconazole on the

pharmacokinetics of the capsule formulation in adults, and

predict the pharmacokinetics of the POS formulation in

children. Of note, more complex models could be imple-

mented to describe more mechanistically the dissolution

process [19, 49, 50]. Another advantage of mechanistic

absorption models is that a better understanding of the

systemic bioavailability and the first-pass effect can be

gained. Our simulations suggest that for both the capsule

and POS formulation, on average more than 50 % of an

orally administered dose of MVG is absorbed into the gut

wall. This is consistent with the reported results of a

clinical study of the pharmacokinetics of 14C-radiolabeled

MVG orally administered to four healthy adult subjects

using the capsule formulation [2]. The high value of Fg

(0.93) indicates a low extent of gut wall metabolism of

MVG, which however strongly relies on our assumption

that the drug is bound to proteins in the enterocytes to the

same extent as in the plasma. The systemic bioavailability

of MVG was predicted for a standard individual in the

population to be 31 % for the capsule and 39 % for the

POS formulation. It should be noted that the capsule for-

mulation used in Study 2 is different from the capsule

formulation assessed in our previous population analysis of

MVG pharmacokinetics in healthy adults (different disso-

lution characteristics) [3]. Therefore, it wasn’t relevant to

compare the present estimate of the systemic bioavail-

ability with the one from our previous analysis.

One of the main applications of PBPK models is to pre-

dict the impact of DDIs on pharmacokinetics of therapeutic

drugs. Since our population WPBPK model could ade-

quately predict the pharmacokinetics of the capsule formu-

lation in the adult subjects of Study 2, we subsequently used

it to predict the effect of ketoconazole on MVG pharma-

cokinetics, without using the data to optimise the inhibition-

related parameters. The model predictions were in good

agreement with the available clinical data (Fig. 8c). In

addition, the predicted increase in AUC (3.8-fold) was

consistent with the results (unpublished) of a former in-

house non-compartmental analysis of Study 2 data (three-

fold). Nevertheless, other types of DDIs (e.g. mechanism-

based inhibition and induction) should be investigated with

the proposed PBPK model to gain confidence in the meta-

bolic pathways involved in MVG elimination. Moreover,

since MVG can be associated to serious neurological

adverse events [51, 52] and since its efficacy is believed to be

closely related to the brain exposure, it is important to

identify DDIs that have significant effect on brain concen-

trations in order to suggest possible dose adjustments.

It has been recognised that the PBPK modelling

approach is ideal for extrapolation of pharmacokinetics of

therapeutic drugs from an adult to a paediatric population

because the differences in the concentration–time profiles

are mainly due to age-related differences in anatomy and

physiology [44]. Including the age-related changes in the

physiological parameters of our WPBPK model as well as

in some drug-specific parameters (i.e. fup and CLin;LI)

allowed reasonable prediction of MVG pharmacokinetics

in children from 3 to 11 years of age, without having to fit

the model to the clinical data (Fig. 8d). The over-prediction

of the median pharmacokinetic trend in the first 5 h post-

dose could be explained by unaccounted age-related

changes in the absorption parameters. No strong evidence

of differences in the absorption-related physiological

parameters (e.g. gastric and small intestine transit times)

between adults and children could be found in the litera-

ture. However it is likely that dissolution of the POS for-

mulation (rate-limiting step of MVG absorption) has a

different pattern in children compared to adults possibly

because the dynamic of fluid in the small intestine is dif-

ferent and/or the change in the fluid volume is more

important than what we accounted for. Nevertheless, the 21

children enrolled in Study 4 might not be representative of

a population aged from 3 to 11 years (see Table 1) which

could also explain the discrepancies between the model

predictions and the observations. It should also be noted

that the maturation of CYP enzymes involved in MVG

metabolism was considered to be achieved in children aged

from 3 years. To predict pharmacokinetics in younger

subjects, age-related changes in the enzyme abundances

(both in the liver and gut wall) should be incorporated in

the model using ontogeny equations [45].

Conclusions

In conclusion, population physiological modelling of MVG

pharmacokinetics provided further insight into its absorp-

tion, distribution and elimination mechanisms in human,

including the source and magnitude of variability. The

Bayesian approach offered a continuous flow of information

from pre-clinical to clinical studies and helped to reduce the

uncertainty in some drug-specific parameter values. This

approach could be applied to new clinical data to update our

current knowledge of MVG population pharmacokinetics

and maintain the information flow during drug development.

The model can be used to predict plasma and brain (target

site) concentration–time profiles following administration

of various oral immediate-release formulations of MVG

alone or when co-administered with other drugs, in adults as

well as in children. While predicting the pharmacokinetic
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properties of new formulations is not of particular interest

for the current clinical development of MVG, being able to

predict the DDI risk of compounds likely to be co-admin-

istered with MVG, across different age groups, could be

useful for the design of better clinical studies. For that

purpose, the data used to evaluate the predictive perfor-

mance of the model (Study 2–4) could now be analysed to

improve our current estimates of the parameters.
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